
A comparative analysis of subreddit recommenders for Reddit

Jay Baxter
Massachusetts Institute of Technology

jbaxter@mit.edu

Abstract

Reddit has become a very popular social news
website, but even though it now has over 10
million users, there is still no good way to
discover “subreddits” - online communities
based on specific discussion topics. This pa-
per approaches the subreddit discovery prob-
lem by using collaborative filtering to rec-
ommend subreddits to Reddit users based
on their past voting history. Three differ-
ent methods are considered, and are evalu-
ated on three metrics: accuracy, coverage,
and novelty. We find that each method has
its strengths and weaknesses, and that there
is no clear-cut best method for this unusual
dataset.

1 Introduction

1.1 What is Reddit?

Reddit is a popular social news website where any reg-
istered user can submit a link or text post. All users
can then vote any submission up or down, signaling
whether they like or dislike the submission. The total
of all votes for a submission (an upvote is +1 and a
downvote is -1) is used to determine how the submis-
sion is ranked (after accounting for how old the post
is) on Reddit’s front page and other pages. For the
rest of the paper, I will use the words “link”, “post”,
and “submission” interchangeably.

1.2 Subreddits

Reddit is divided into communities called “subreddits”
based on areas of interest (e.g. programming, world

news, gaming, atheism, or movies), and every submis-
sion must be submitted to one of these subreddit com-
munities. Users can pick which subreddits they sub-
scribe to, based on their own interests, but users are
automatically subscribed to a default set of 20.

1.3 Why a recommender would be helpful

Since there are over 67,000 subreddits and over 10 mil-
lion active users, finding a subreddit that matches your
interests is not an easy problem. There are many sites
that allow users to search for and browse subreddits,
but there is no recommender yet, even though Reddit
expressed a desire to have one two years ago. There are
two types of recommenders you could make for Reddit:
a submission recommender that would recommend in-
dividual posts that you are likely to like, and a sub-
reddit recommender that recommends entire areas of
interest to you. A number of people have made submis-
sion recommenders, but none that work well enough,
and surprisingly, nobody has made a subreddit recom-
mender (at least publicly). This paper focuses on the
novel problem of recommending subreddits.

Subreddit discovery is a challenging problem for many
users. Currently, the only ways to discover subreddits
are to search, browse by popularity, browse randomly,
or use a third party website like metareddit.com, sub-
redditfinder.com, and yasiv.com that attempt to solve
the subreddit discovery problem by using tags and
user-defined lists of “subreddits similar to this one”.
However, the problem a subreddit recommender is try-
ing to solve is fundamentally different: instead of just
recommending more similar content, the system aims
to recommend content that you will like, that could
potentially be, and ideally will be, quite different from
the content you already have seen.

2 Data

2.1 Data collection and format

Reddit allows users to check a box in their profile
that gives Reddit permission to use their data. As of
April 2, 2012, when this dataset was collected, 17,261
users had agreed to share their data publicly. In total,
the dataset consists of all 5,260,381 votes those 17,261
users have made on 2,337,323 submissions that span
12,079 subreddits. For each vote, we have the user
ID who made the vote, the submission ID of the sub-
mission he/she voted on, the subreddit name of the
submission, and whether the vote was an upvote or
downvote. All of the data is anonymized except for
the subreddit names. Unfortunately, there is no time
or content (what words the submissions contained)
data available in this dataset, so all recommendations
will be based on “collaborative filtering”: giving rec-
ommendations (filtering) by collecting preferences or
taste information from many users (collaborating).

2.2 Dealing with downvotes

When a user upvotes a post, it is an indication that
that user liked the post, and would have liked that
post to be recommended to him. If a user downvotes
a post, it would be intuitive for that to mean that the
user does not like the post. However, previous work
on submission-level recommendations has shown that
users tend to downvote submissions that they found in-
teresting enough to read, even though they disagreed
with some part of it enough to downvote it. I also
found that the results got worse when I included down-
votes in my dataset, so in this paper, all downvotes will
be ignored when making recommendations. If we ig-
nore downvotes, the dataset we are left with reduces to
3,944,301 upvotes: 75% of the total number of votes.
For the rest of the paper, when I refer to “votes”, I am
referring to only upvotes.

2.3 Data statistics and sparsity

The dataset is very sparse: there is an average of 228.5
upvotes per user over 2,337,323 different submissions
and 12,079 subreddits, and 326.5 upvotes per subred-
dit.

The 20 default subreddits contain 48% (1862415 out of
3894148) of the total votes. There is a strong overlap
between those subreddits and the 20 most popular sub-
breddits, which contain 65% (2514179 out of 3894148)
of the total votes.

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of votes per subreddit

Subreddit IDs sorted by increasing subreddit size

S
ub

re
dd

it
si

ze

Figure 1: A log-log plot demonstrating the long tail
of subreddit popularity. The horizontal axis shows the
12,079 subreddits sorted by increasing size, and the
vertical axis represents the size of the given subreddit
by number of total votes. (The plotted line becomes
indistinguishable from the horizontal axis.)

There is a long tail of subreddit popularity. There are
a few very popular subreddits and many many other
unpopular subreddits, as is demonstrated in Figure 1.

It is important that the methods used are able to deal
with this sparsity. However, in some cases, there is so
little data that it doesn’t even make sense. For exam-
ple, if a subreddit has less than 10 different users who
have ever voted on it, it is very hard to get a picture
of what kind of user likes that subreddit. In this pa-
per, the cold-start problem is ignored, and we remove
subreddits with less than 10 users, leaving 1,876 out
of the 12,079. We also ignore users that have less than
10 votes on non-default subreddits since this paper is
focused on how to recommend non-default subreddits,
which leaves 7,363 users out of the original 17,261.
While that is only 16% of the subreddits and 43%
of the users, we still have 95% of the original votes:
3690933 out of 3894148.

3 Evaluation

There are many, many ways to evaluate recommender
systems in the literature, and no consensus about
which is best. However, the evaluation method used
obviously has a major impact on what type of algo-
rithms do best. The most important thing to evaluate
is “accuracy”: does the user actually like the recom-
mendations? Other considerations are novelty (would
the user have been able to find this item on her own),

coverage (what proportion of total items does the sys-
tem ever recommend?), and learning rate (how many
items does the user need to rate to start getting good
recommendations?). In this paper, the focus is on ac-
curacy, novelty, and coverage.

Since nobody has ever used this dataset for subreddit
recommendations before, a huge portion of my time
was spent defining the problem, choosing proper train-
ing and testing splits, and choosing proper evaluation
methods.

To evaluate recommendations, we must keep in mind
that our goal is to recommend a subreddits that the
user will upvote posts on.

3.1 Training and testing splits

At the subreddit level, the recommendation problem is
fundamentally a content discovery problem. I decided
that the training and testing splits should resemble
the real user experience as closely as possible. At the
time of data collection, when a new user joined Red-
dit, they were automatically subscribed to a default
set of 20 subreddits (since then, a few more subreddits
have been added to the default set). In this sense, all
users have all seen the same default set of subreddits.
Then, as a user spends more and more time browsing
Reddit, she slowly discovers more and more subreddits
outside the default set. Therefore, since all users have
all seen the default set, we will never recommend those
subreddits, and will always use those as training data.
For a given user, there will be two testing scenarios:
one where the training data is only the data from the
default subreddits, and all votes on non-default sub-
reddits are testing data to simulate new users, and
another scenario where we randomly select a portion
of non-default subreddits to additionally be included
in the training set to simulate more experienced users.
In all results shown in this paper, we perform 10-fold
cross-validation over the users. On subreddits, we al-
ways train on the default, and then either test on all
the rest, or perform 2 or 10-fold cross validation over
the non-default subreddits. Confirming our intuition
that we can give better recommendations with more
user data, we find that every method gets a higher ac-
curacy score when we train on some of the non-default
subreddits in addition to the defaults.

3.2 Accuracy Metric

For evaluating subreddit recommendations, I consid-
ering many different types, and decided that a utility
metric would be most accurate. First, we must define

a user’s rating of a subreddit, since there is no obvious
way. We will define the rating as the number of times
user i has upvoted a post in subreddit j, vi,j , divided
by his total number of upvotes.

ri,j =
vi,j∑
j vi,j

(1)

We define the utility of a recommendation to the user
to be the user’s rating of the recommended subreddit
times the likelihood that the user will see the recom-
mendation. Common likelihood functions are expo-
nential decay with half-life α and the step function
that only consider the top N recommendations. [1]
Let Ri be the expected utility for user i over subred-
dits j.

Astep
i =

N∑
j=1

ri,j (2)

To more appropriately model a real use case for this
recommender system, I chose to use step function like-
lihood, because a user will most likely view all the
recommendations on the page, and be unlikely to look
at the next page.

The overall score for a dataset over all users, A, is
shown below, where Amax

i is the utility achieved from
giving perfect recommendations for user i.

A =

∑
iAi∑

iA
max
i

(3)

This score can be interpreted as the percentage of all
of the user’s held-out votes that are contained within
the subreddits we recommended.

3.3 Coverage

Coverage is one way to determine if a recommender
recommends the same popular items to everyone in-
stead of coming up with a reasonable degree of per-
sonalization. Coverage is defined as the percentage of
all recommendable items that the system ever recom-
mends to any user (as one of the top N recommenda-
tions).

3.4 Novelty and Serendipity

Novelty and serendipity are two crucially important
aspects of a recommender system. Novelty measures
how likely it is that the user has never seen the rec-
ommended item before, and serendipity measures how
likely it is that the item is both novel and hard for the
user to find. If an item is serendipitous, it is therefore
also novel. Novelty and serendipity are important be-
cause the entire point of a recommender is to show the
user content he hasn’t already seen before. Unfortu-
nately, novelty and serendipity are very hard to quanti-
tatively measure without performing a study with live
users and observing their actions to recommendations.

The baseline method described in the next method al-
ways returns the most popular subreddit. We can get
an approximate idea of novelty by finding the differ-
ence between these most popular results and the re-
sults of a recommender. We will measure novelty of a
set of recommendations as the sum of the inverse pop-
ularities of all subreddits (where popularity means the
number of votes in the subreddit), where j ranges over
the N recommended subreddits, and where i denotes
the user id.

NOV =

N∑
j=1

1∑
i rij

(4)

With N=20 recommendations, returning the most
popular items gives 0.448 and returning the least pop-
ular items gives 11440. Novelty scales with N : if N
increases, so does novelty. Of course, returning the
least popular items is not useful, so this metric must
be considered as something to trade off with accuracy.

We are unable to measure serendipity with this
dataset, but as future work, more data could be col-
lected to determine which subreddits are easily discov-
erable for which users.

4 Baseline Method

The simple recommendation algorithm used as a base-
line makes the same predictions for all users. Given
that constraint, the baseline method will maximize its
score by always recommending the most popular sub-
reddits from the test set based on the training users’
preferences.

The above tables give us an intuition for the nature of
the dataset and the typical values accuracy, coverage,

N 1 5 10 20 50
Accuracy 0.070 0.246 0.336 0.448 0.611
Coverage 0.0005 0.003 0.005 0.010 0.025
Novelty 0.005 0.039 0.139 0.448 2.53

Figure 2: Train on default subreddits; test on rest

N 1 5 10 20 50
Accuracy 0.116 0.325 0.439 0.567 0.728
Coverage 0.0001 0.005 0.010 0.020 0.049
Novelty 0.007 0.07 0.24 0.83 5.11

Figure 3: 2-fold cross-validation over subreddits

and novelty take on for each different cross-validation
setup. Here, we see that coverage and accuracy in-
crease as N increases, but accuracy does not.

Since these variables have such predictable relation-
ships with N , for the sake of brevity, I only display
results with N = 20 for the rest of the paper, since
that is the most likely use case. However, the results
do not qualitatively change as N changes to 10 or 50,
for example.

5 Nearest Neighbors

The first real recommendation method we will try
is nearest neighbor, or k nearest neighbors (kNN).
We must first define some notion of distance between
users. Then, when we are asked to give a recommen-
dation for a user, we compute the distance between
that user and all other users. We take the average of
the k most similar users’ ratings to predict the ratings
for the query user, and then return the N items with
the highest predicted rating.

This approach is called a memory-based approach, as
opposed to model-based, because kNN never builds a
model - it looks all all the data for every query. My
implementation computes a matrix of user similari-
ties in order to efficiently compute similarities using
vectorized Matlab code, but on a larger dataset, this
algorithm does not scale. The time it saves not build-
ing a model is quickly lost when computing queries in
O(|U | · |V |) time, although there are many faster ap-
proximation methods. In a live implementation, this
user matrix would need to be recomputed every time
a new item was added, making it impractical unless
approximations are used.

N 1 5 10 20 50
Accuracy 0.255 0.560 0.691 0.803 0.927
Coverage 0.005 0.025 0.049 0.098 0.246
Novelty 0.02 0.30 1.150 4.86 39.17

Figure 4: 10-fold cross-validation over subreddits

5.1 Subreddit-based User Similarity

Looking at similarity at the subreddit level, as opposed
to looking at similarities between votes on individual
posts, is a way of dealing with data sparsity. Since
there are so many different posts, and the probability
of two users both upvoting the same specific post is
so low, we can aggregate posts together by subreddit
and compute how similar users are based on how much
they seem to like each subreddit as a whole instead of
each individual post.

Cosine similarity is one similarity metric that is com-
monly used to compare users and items in recom-
mender systems, and it is used here because it is nat-
ural given the domain, and is easy to compute.

sim(u1, u2) = cos(~u1, ~u2)) =
~u1 · ~u2
‖~u1‖‖~u2‖

Computability is a real concern, since we are required
to compute the distance between all pairs of users,
and even cosine similarity can be too slow for mas-
sive datasets like Amazon. This rules out many more
complex similarity functions.

k 1 2 5 10 50
Accuracy 0.324 0.325 0.330 0.325 0.328
Coverage 0.249 0.255 0.249 0.252 0.250
Novelty 5.29 5.56 5.35 5.44 5.63

Figure 5: kNN results with cosine similarity distance.
Trained on default subreddits; tested on rest

k 1 2 5 10 50
Accuracy 0.438 0.419 0.433 0.428 0.434
Coverage 0.452 0.447 0.453 0.451 0.250
Novelty 9.69 10.05 9.90 10.0 5.63

Figure 6: kNN results with cosine similarity distance.
2-fold cross-validation over subreddits

5.2 Weighting similarities based on subreddit
popularity

As a way to give more weight to subreddits that are
smaller (or larger), I computed subreddit popularities.

Let A be the vote matrix where Aij is the number of
times user i has upvoted subreddit j. First, the total
number of votes V per subreddit can be found by sum-
ming out the users: Vj =

∑
iAij . I then normalize V

and then compute a popularity weightWj = − log(Vj).
The logarithm is there to ensure that the numbers stay
reasonable: without it, the results become very erratic.

Then, I compute user similarity by looking at the sub-
reddits that both users have voted on, normalizing
their votes across those subreddits, then computing
the elementwise product of those vectors, and then let
the similarity be the dot product of that vector with
the subreddit popularity weights, to take into account
how it’s more informative that two users both like the
same unpopular subreddit than if they both like the
same popular subreddit.

k 1 2 5 10 50
Accuracy 0.329 0.329 0.329 0.329 0.328
Coverage 0.011 0.011 0.011 0.011 0.011
Novelty 13.68 13.75 14.30 13.68 13.71

Figure 7: kNN with unpopular-weighted cosine simi-
larity, trained on default subreddits; tested on rest.

Surprisingly, this method gets similar accuracy scores
as nearest neighbors using unweighted cosine similar-
ity, in addition to getting better novelty scores. Coun-
terintuitively, coverage scores decreased.

I also took the inverse of the weightings, so that simi-
larity is more heavily affected by larger subreddits.

k 1 2 5 10 50
Accuracy 0.497 0.465 0.463 0.469 0.467
Coverage 0.022 0.022 0.022 0.022 0.022
Novelty 7.57 7.74 8.31 7.82 7.55

Figure 8: kNN results with popular-weighted cosine
similarity, trained on default subreddits; tested on rest

This method works surprisingly well: it has the high-
est accuracy of the paper, while still achieving good
novelty. The surprisingly good results of this method
may be a result of how the training and test sets were
constructed, but either way, the success of this method
is one of the most unintuitive results of this paper.

6 SVD

Singular Value Decomposition (SVD) is a way to
find low-rank approximations that minimize the sum
squared distance the the ratings matrix R, where each
rating Rij is the number of times user i has upvoted a

post in subreddit j. SVD factors R into USV T , where
U can be thought of as the user matrix, V can be
thought of as the subreddit matrix, and S is the singu-
lar value matrix. To obtain a low-rank approximation
of the data, we limit the dimensions by limiting the di-
mensionality of S. With the dimension limited, SVD
computes the approximation matrix R̂ = USV T that
minimizes the sum-squared distance of the observed
entries in R.

In contrast to nearest neighbors, SVD is a model-
based method. Consequently, it requires more up-front
model-building time, but can answer recommendation
queries much faster than kNN.

SVD has two parameters that I set: the dimensional-
ity and the way we initialize the held-out ratings. To
optimally pick these parameters, I tested many values
with cross-validation.

In some sense, you need to fill the blank ratings in.
I tried three methods: filling them all with zeros, fill
them all uniformly, and filling them all based on sub-
reddit popularity. However, the differences between
these three filling methods were extremely negligible
- there was no difference in the resulting recommen-
dations given. The dimensionality, however, was very
important.

Novelty varies highly from run to run with SVD, but
definitely decreases as the dimensionality increases.
The below table shows scores averaged over 5 sepa-
rate runs of 10-fold cross-validation. Accuracy and
coverage remain nearly constant across trials.

Dim 1 2 3 4 5
Accuracy 0.445 0.462 0.464 0.436 0.434
Coverage 0.020 0.022 0.022 0.030 0.033
Novelty 153.8 32.18 1.47 0.691 4.390

Figure 9: Unscaled SVD trained on default subreddits;
tested on rest

Dim 1 2 3 4 5
Accuracy 0.528 0.573 0.576 0.563 0.560
Coverage 0.267 0.041 0.048 0.056 0.059
Novelty 68.98 7.42 1.06 1.16 2.28

Figure 10: Unscaled SVD with 2-fold cross-validation
over subreddits

Dim 1 2 3 4 5
Accuracy 0.803 0.816 0.811 0.804 0.813
Coverage 0.126 0.173 0.224 0.237 0.263
Novelty 10.76 7.74 6.98 7.58 8.51

Figure 11: Unscaled SVD with 10-fold cross-validation
over subreddits

After performing cross-validation, we found that the
2-dimension model and 3-dimension model get very
similar accuracy. Additionally, we find that novelty is
by far the highest with 1 dimension, and drastically
decreases as dimensions are added. Coverage is fairly
constant throughout. Depending on whether novelty
or accuracy is more important for the situation, the
rank 1 and 2 models are by far the best.

6.1 Scaling the data

Rank 1 2 3 4 5
Accuracy 0.438 0.459 0.422 0.430 0.434
Coverage 0.020 0.022 0.023 0.027 0 .031
Novelty 163.4 45.7 0.67 8.53 1.24

Figure 12: Scaled. Trained on default subreddits;
tested on rest

Normalizing the vote data causes accuracy to go down,
but causes novelty to go up. Again, coverage and accu-
racy are quite constant, but novelty has high variance.
For example, with dimension 4 in the table above, one
fluke run had a novelty of over 30, skewing the average.

7 Probabilistic Matrix Factorization

Probabilistic Matrix Factorizaiton (PMF) is a
bayesian approach to matrix factorization that at-
tempts to deal with very large, sparse datasets [3].
The authors provide a partial implementation of their
code intended for the Netflix challenge, but I needed
to modify the code to implement the missing pieces
and adapt its parameters to fit the Reddit problem.
To adapt their implementation, I closely followed [3],
and adjusted the code so that it took Reddit data in-
stead of Netflix data. This includes changing the av-
erage rating and removing the sigmoid function from
the ratings outputs.

PMF can be viewed as a probabilistic extension to
SVD, because if all ratings are observed and prior vari-
ances are infinite, then the objective function reduces
to the SVD objective. As in SVD, our goal is to fit

D × N user matrix U and D ×M subreddit matrix
V that multiply to give the best matrix R under the
loss function. We use a probabilistic linear model with
Gaussian observation noise, where the conditional dis-
tribution on observed ratings is:

p(R|U, V, σ2) =

N∏
i=1

M∏
j=1

(N (Rij |UT
i Vj , σ

2))Iij (5)

where Iij is equal to 1 if user i rated subreddit j. We
also place zero-mean spherical Gaussian priors on user
and movie feature vectors. The resulting graphical
model is shown in Figure 13.

Figure 13: The bayesian network for PMF

[3] shows that given this setup, maximizing the log-
posterior distribution over movie and user features
with constant hyper parameters is equivalent to min-
imizing the sum of squared error objective function
with quadratic regularization:

E =
1

2

N∑
i=1

M∑
j=1

Iij(Rij − UT
i Vj)

2

+
λU
2

N∑
i=1

‖Ui‖2Fro +
λV
2

M∑
j=1

‖Vj‖2Fro

where λU = σ2/σ2
U , λV = σ2/σ2

V , and ‖ · ‖2Fro denotes
the Frobenius norm. We can optimize this objective
function by performing gradient descent on U and V .

I was very surprised by the results of PMF. I thought it
would be a high-accuracy method like SVD, but I tried
a very large set of possible parameters and never got
accuracy close to the baseline method when training on

the default subreddits and testing on the rest. Since I
was forced to train this model using gradient descent,
it’s possible that there is a parameter setting that I
missed, but my results are so consistent that I doubt
PMF can do better on this dataset.

One peculiarity is that with λ ranging from 0 to 0.1,
the best accuracy is achieved with λ = 0. Better nov-
elties are achieved with higher regularization, which
also makes sense: the more regularization, the less we
overfit. Additionally, the results show that the initial-
ization method does not have a noticeable impact on
the final recommendations.

Instead of giving high accuracies, PMF gives accept-
able accuracies that are roughly around 10%, which
means that 2 out of any 20 results are relevant. How-
ever, PMF has by far the highest novelty out of any
recommendation method. Without user testing, it is
unclear what the preferred tradeoff between novelty
and accuracy is, but PMF has exceedingly high nov-
elty. PMF also gives quite good coverage compared
to other methods, which increases its potential useful-
ness.

λ 0.1 0.01 0.001 0.0001 0
Acc. 0.002 0.078 0.105 0.127 0.126
Cov. 0.083 0.151 0.156 0.140 0.141
Nov. 924270 14975 51562 83488 41596

Figure 14: With ε = 50 and default ratings initialized
to zero. Trained on default subreddits; test on rest.

CV Folds 0 2 10
Accuracy 0.130 0.220 0.345
Coverage 0.158 0.274 0.783
Novelty 41596 170550 721630

Figure 15: With ε = 50, λ = 0, and default ratings
initialized to the average rating for each user. 0 folds
of CV means that I trained on the default subreddits
and tested on the rest.

There is also a fully bayesian version of PMF, Bayesian
PMF (BPMF), that puts priors on all the parame-
ters [2]. BPMF has been shown to get better results
than PMF, especially for users with few votes. How-
ever, it must be trained with approximate inference,
e.g. Gibbs Sampling, that takes days to converge on a
dataset this size, even when initialized to the MAP so-
lution found by PMF. Since PMF already takes hours
to train, I must leave testing BPMF as work for future
experiments.

8 Conclusion

Different methods are better depending on which eval-
uation metric is most important to us. We see that
kNN with subreddit popularity weighting gives the
highest accuracy, with SVD close behind. SVD also
gets good novelty when 1 or 2 dimensions are used.
PMF gives the best novelty and acceptable accuracy,
and nearest neighbor gives the best coverage for k less
than about 10 when using normal weightings. Mul-
tiple variations of these methods were tried as well:
we found that scaling the data hurts SVD perfor-
mance and weighting unpopular subreddits more heav-
ily hurts kNN performance, both results that I did not
expect. PMF’s performance was surprising as well:
the Reddit dataset has characteristics different enough
from the Netflix challenge that algorithms that worked
well on that task do not necessarily work well on this
task, as has been shown empirically. In summary,
many more methods should be tried as well, with a
focus on kNN and SVD-like methods.

References

[1] J.L. Herlocker, J.A. Konstan, L.G. Terveen, and
J.T. Riedl. Evaluating collaborative filtering rec-
ommender systems. ACM Transactions on Infor-
mation Systems (TOIS), 22(1):5–53, 2004.

[2] R. Salakhutdinov and A. Mnih. Bayesian prob-
abilistic matrix factorization using markov chain
monte carlo. In Proceedings of the 25th interna-
tional conference on Machine learning, pages 880–
887. ACM, 2008.

[3] R. Salakhutdinov and A. Mnih. Probabilistic ma-
trix factorization. Advances in neural information
processing systems, 20:1257–1264, 2008.

