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Abstract

Food recognition is a difficult problem, because unlike
objects like cars, faces, or pedestrians, food is deformable
and exhibits high intra-class variation. This paper con-
siders the approach of analyzing a food item at the pixel-
level by classifying each pixel as a certain ingredient, and
then using statistics and spatial relationships between those
pixel ingredient labels as features in an SVM classifier. We
experimented with multiple variations on past methods, and
found that using pixel ingredient labels to identify food
greatly increases classification accuracy, but at the expense
of higher computational cost.

1. Introduction

Food recognition has only become a fairly popular topic
in the last few years, which is largely a result of the quickly
growing number of people who routinely take pictures of
their food with cell phone cameras before eating it. The
main application of food recognition is to create a nutri-
tional information phone application that is able to analyze
these pictures of food and deduce the nutritional content of
the food eaten. The most critical and difficult step of this
process is recognizing the type of food in the picture: once
the type of food is determined, estimating quantity and nu-
tritional information is much easier. Quantity can be de-
termined by asking participants to include a thumb in their
picture or have the food a fixed distance away from the cam-
era. Nutritional information can be looked up in official
databases. Therefore, this paper addresses the problem of
food recognition: determining what type of food is in the
picture, given that we know that the input picture is of food,
and that the food is the main focus of the picture. We as-
sume that the background is rather plain, like a plain table-
top.

Even with such a restricted problem domain, food recog-
nition is a very hard problem. Unlike other types of objects
where object recognition has been more successful, such as
faces, cars, and pedestrians, food is very deformable and has
high intra-class variation, as is shown in Figure 1. Pasta is

deformable, meaning that it is amorphous. The definition of
pasta has nothing to do with shape, and only has to do with
its ingredients and method of preparation. Ingredients and
method of preparation manifest themselves in the visible
features shape, color, and texture. However, even in a type
of food we often think of as having a rigid shape and struc-
ture, a Big Mac, there is high intra-class variation: some-
times the meat is hidden underneath the bun, sometimes the
cheese isn’t visible, sometimes the lettuce is hidden, etc.

In this paper, we address these problems by trying to
identify the ingredients that make up a food item. Humans
describe food items and their differences in terms of the in-
gredients they contain and the way the ingredients are ar-
ranged, so it makes intuitive sense that we may be able to
glean extra information by extracting features at an inter-
mediate ingredient level instead of just as the original pixel
level. After labeling the ingredients in the image, we ex-
tract features that describe the relatives quantities of each
ingredient (which is useful for distinguishing a salad from a
hamburger, because a salad has much more lettuce) as well
as the spatial relationships between the ingredients (which
is useful for determining a Big Mac from a normal ham-
burger, since we expect to see bread-meat-bread-meat-bread
instead of bread-meat-bread).

2. Related Work

This paper relies heavily on past work by Yang et al.
[11] on identifying food using pairwise statistics of local
features, which was the paper that introduced the idea of
randomly sampling ingredient pixels from the food and us-
ing histograms of statistics such as distance and orientation
as features in an SVM classifier.

Pixel-level ingredients labels are also used as interme-
diate features in [12], but that paper focused only on the
global ingredient histogram instead of the pairwise statis-
tics.

Other work has considered combining both global and
local features, such as global histograms, which is an ap-
proach that I take in this paper [1].

Less related work on food recognition has focused on
extracting many different features, such as bag of SIFT and



Figure 1. Food recognition is a hard problem: deformable objects and high intra-class variation.

textons [5]. Joutou and Yanai combined these features into
one classifier with multi-kernel learning [6].

Kong and Tan showed that food can be classified much
better with multiple viewpoints [7], but this work is only
applicable to a cell phone application if the user takes video
of her food instead of just a picture.

In this paper, we focus on building off of Yang et al.’s ap-
proach in [11] by integrating ideas from these other papers.

3. Baseline Methods

To compare to our other methods (and to combine with
them later to achieve even greater performance), standard
object recognition techniques were used.

3.1. Bag of SIFT

The SIFT descriptor [8], when combined in a bag of
words model, has been shown to perform well as a feature
for image classification [4]. In this approach, the first step
is to generate a discrete dictionary of SIFT features, which
is obtained by running k-means clustering. Each SIFT de-
scriptor is matched to the closest cluster center. Then, each
image is described by the frequencies of each SIFT cluster
in that image. Classification is performed in this paper with
a multi-class SVM with x? or histogram intersection kernel.

3.2. RGB Histogram

One other common feature is the RGB histogram, which
is constructed by dividing the color space up into bins, and
placing each pixel in the bin that its RGB values fall into.
I divide each color evenly from 0-255 into four bins, 0-
63, 64-127, 128-191, and 192-255, which results in a 64-
dimensional histogram, which is again classified using an
SVM.

On the PFID dataset, where images have very clean
white backgrounds, the RGB histogram is able to effec-
tively capture the size of the food, since no other pixels be-
sides the background pixels are white enough to fall into
that bin. As a result, RGB histograms work much better
on this dataset than they would without the food-detection
problem already solved for us in advance.

4. Ingredient Segmentation

In order to consider ingredient-level features, the most
important step is labeling each pixel as a specific ingredi-
ent. To accomplish this task, I used semantic texton forests
(STF) [10] because they have been shown to work well
on difficult segmentation datasets, and because Yang et al.
showed that they give reasonable performance on ingredi-
ent segmentation with relatively little training data [11]. 1



Figure 2. The first two rows show hand-labeled ingredient labels, used as training data for the Semantic Texton Forest.

Figure 3. On the left are sample input pictures to the trained STF, and on the right are output visualizations shown such that each pixel
is colored the color of the ingredient that it is most likely to be, according to our segmentation. In the Big Mac, the meat and lettuce are
perfectly identified, and most of the bread was identified correctly. However, there is a fair amount of noise: part of the bun is labeled as
bacon (purple). Clearly, these ingredient labels can be quite noisy, and any improvements in the ingredient labeling algorithm will cause
corresponding improvements in this food recognition classifier.

hand labeled the pixel-level ingredients for 18 images that trained STF segmented on the rest of the images (see Fig-
were used as training data for the STF (which was enough ure 3 for sample images). Even with 18 training images the
to cover every ingredient at least 3 times), and then ran the algorithm performs well enough, but future work should in-



vestigate the improvements that may occur with more train-
ing data.

I needed to hand-select the ingredients that STF would
be trained to detect. I found that 8 ingredients (not includ-
ing the background) were sufficient to fully describe the
types of ingredients found in PFID (note that these ingre-
dients differ from the ingredients used by Yang et al. [11]
- they are much more easily distinguishable. In particular,
Yang et al. used some ingredients that I couldn’t even dis-
tinguish by eye in any of the images in this dataset (egg
and cheese) or that only appeared in a few instances (pork).
The ingredients I selected, with an emphasis on making sure
their appearances are sufficiently different, were beef, white
meat (chicken/turkey/etc.), bread, green vegetables, toma-
toes, cheese, and chocolate. In my preliminary tests, I found
that STF gave better looking results with these ingredients,
although I did not have time for a full quantitative evalua-
tion of how ingredient selection affects classification accu-
racy (each full run takes of STF takes over a day on this
dataset), so that would be interesting to explore in future
work.

STF assigns a probability distribution to each pixel that
describes the probability that that pixel is a certain ingredi-
ent. Typically, background pixels are very confidently la-
beled as background (> 99%), and food items are more
commonly labeled with confidences between 30 and 60 per-
cent. We use these soft-labels in the next step.

S. Ingredient Features

The heard of this food recognition algorithm is extracting
histogram features from the probabilistic ingredient labels
that we got as output from STF.

5.1. Global Ingredient Histogram

The most naive approach is to construct an ingredient
histogram that simply represents the proportion of food that
is of a given ingredient type. We have nine bins - one for
each ingredient, plus background. This approach captures a
large amount of the information that we get from the ingre-
dient labels.

5.2. Pairwise Ingredient Features

The way we extract local features is to examine every
pair of points in the food (excluding the background), ex-
tract features from each pair, and add them up in a his-
togram. However, since the images in PFID are quite large,
examining every pair of points is not computationally feasi-
ble. Instead, I sampled 500 pixels randomly from the food
item and computed the pairwise statistics between them. It
should be noted that even when only using 500 pixels, these
computations take on the order of days for all images in
the dataset with a modern desktop computer. For a single
image, processing can be done in about 2 minutes, which

makes this approach applicable only when instantaneous
feedback is not necessary.

5.2.1 Pairwise Distance

We compute the base-2 logarithm of the pairwise distance
between points instead of the absolute distance. While un-
intuitive, this logarithm will give us scale invariance, as |
describe in the Invariance subsection, and empirically, it
does not decrease its usefulness as a feature. This feature
allows us to capture whether there are small pieces of bread
scattered around, like croutons in a salad, or lots of bread
pixels all in one giant blob. The results are stored in an
8x8x12 histogram, where there is one bin for each non-
background ingredient, and 12 bins for different thresholds
of distance. Since pixels have probabilistic ingredient la-
bels, we weight each entry in the histogram by the proba-
bility that each point in the pair is a given ingredient. For
example, if the first point has a 70% of being bread and the
second has a 30% change of being bread, and the distance
between them is 10, then we add 0.21 (70% x 30%) to the
(bread, bread, 10) entry of the histogram. Experimenting
with different weighting functions is a way that this work
could be extended, but this one worked well and is intuitive.

5.2.2 Pairwise Orientation

We compute the angle between every pair of randomly sam-
pled points, and quantize the resulting angle into 12 distinct
bands, each spanning 15 degrees (since the relationship be-
tween points needs to be symmetric, there are 180 total de-
grees instead of 360). Like the pairwise distance feature,
the resulting histogram is an 8x8x12 histogram, and each
entry is multiplied by the probabilities of both the pixel in-
gredient probabilities. This feature can capture details like
whether an ingredient is all in a long line. In that case, the
orientations would all be clustered in one bin for a certain
ingredient.

5.2.3 Pairwise Midpoint Ingredient Labels

Unlike the previous two pairwise features, this feature is an
8x8x8 histogram, where each dimension represents the in-
gredient label of one of three points: the two randomly sam-
pled points, and their midpoint. The same weighting is used
as in the previous two pairwise features. The goal of this
feature is to capture the spatial relationships that character-
ize some of the more structured food items, like sandwiches.
We would expect there to be a number of bread - meat -
bread pairs in a sandwich. However, in practice, this feature
proves to be one of the most useless, and does a particularly
bad job recognizing sandwiches (the RGB histogram does
better). It doesn’t work as well as other methods because it
relies more heavily on accurate pixel ingredient labels (the



bread and meat labels need to be correct), and the meat in
a sandwich is often very small compared to the rest of the
sandwich, so if we randomly sample pairs of points, there
are very few examples where we actually see bread - meat -
bread patterns.

5.2.4 Invariance

I used the clever histogram normalization techniques used
by Yang et al. [11] where we compute the mode of the pair-
wise distance and orientation, and then recenter those his-
tograms in the appropriate direction so that it is centered on
the mode. This technique gives rotation invariance, because
now rotating the image wouldn’t change the orientation his-
togram. Additionally, since the distance is actually the log
of the distance, a scale change of the image only shifts
the distance histogram, which will be re-centered, therefore
giving scale invariance.

6. SVM C(lassifier

We use an SVM classifier with the histogram intersection
kernel from [9], and the implementation provided by the
authors, which is built on top of libsvm [2]. There are many
kernels for comparing histograms. The two most prevalent
are the 2 kernel and the histogram intersection kernel. For
histograms a and b with a; > 0 and b; > 0 V4, the histogram
intersection kernel is defined as:

K(a,b) = Zmin(ai,bi) (1)
i=1

The x? kernel is defined as:

— (a; — b;)?
K(a,b) = exp <Z w> 2

i=1

In these experiments, I used the histogram intersection
kernel, but similar results would be obtained with a X2 ker-
nel, or likely even with a linear kernel if the data is appro-
priately scaled.

7. Dataset

It is very difficult to compare results between different
methods in the field of food recognition because there is no
standard dataset. The Pittsburgh Fast Food Image Dataset
(PFID) [3] was an attempt at standardizing a food recogni-
tion dataset. This dataset contains 101 different fast food
items (e.g. McDonald’s Big Mac and Wendy’s Baconator),
where each food item was collected on 3 different days, and
for each of those 3 instances of a food item there are 6 pic-
tures of the food item from different orientations (each 60
degrees apart) on a white table with a white backdrop. The

dataset, therefore, is designed for evaluation of food recog-
nition, since the food is essentially already detected.

However, PFID has not been widely used since its re-
lease, partially because the data is not in a ready-to-use for-
mat: it requires a significant amount of cleaning up. I had
to go through the entire dataset by hand and remove certain
food items that weren’t really food (some pictures were of
soft drink cups), and remove all food items that had less
than 18 images.

Additionally, the dataset is too difficult. Even humans
are not able to easily categorize some similar food items, as
shown in Figure 4.

Therefore, I manually divided the food items up into
seven larger categories: sandwiches, salads/sides, chicken,
breads/pastries, donuts, bagels, and pizza. These categories
are easily distinguishable by humans, and therefore make
for a more realistic food recognition challenge. However,
some of the food did not fit well into these categories (there
was one instance of a granola bar, for example), so I had to
remove those outliers. In the end, there were 88 different
food types and 7 major categories.

8. Results

Features 88-Cat. Acc. | 7-Cat. Acc.

GIH 36.8 69.1

RGB 35.5 71.2

MID 31.8 71.2

OR 37.7 73.7

DIST 36.1 754

DIST + GIH 40.5 76.3

OR + GIH 40.5 76.4

RGB + GIH 36.6 76.5

MID + GIH 37.5 75.5

DIST + MID + GIH 40.7 76.7

MID + OR + GIH 40.4 77.0

All except RGB 40.4 77.0

DIST + OR + GIH 40.7 77.0

All 37.5 81.2

Figure 5. Classification results using an SVM with various im-
age features, sorted by increasing accuracy on 7 categories. RGB
means RGB histogram, GIH means global ingredient histogram,
MID means pairwise midpoint pixel label histogram, OR means
pairwise orientation histogram, DIST means pairwise distance his-
togram.

I used the experimental setup proposed for PFID by
Chen et al. [3] where we perform 3-fold cross validation
over the images, where each fold contains the 6 pictures of
every food item obtained on the same day. Since each food
was obtained on three separate days, each fold contains six
pictures of each food item.

Using the experimental setup described above, we found
that the bag of SIFT gives 13% accuracy on the 88-category



Figure 4. Example images from the Pittsburgh Fast Food Image dataset. On top are Arby’s turkey and swiss sandwich and Arby’s turkey
and ranch sandwich, and on the bottom are Dunkin Donuts’ sugar raised donut, and Dunkin Donuts’ glazed donut. It is incredibly hard for
even a human to differentiate between the two Arby’s sandwiches, so I spent most of my attention optimizing for classification among the
7 major categories (e.g. sandwich and donut) instead of at the individual food item level.

data and 59% accuracy on the 7-category data, which is by
far the worst of any method I tried. The performance of the
RGB histogram is significantly better than what was found
in [11] and [3], possibly because their implementation ig-
nored the background data, and possibly because of differ-
ences in how we cleaned up the PFID data (Yang et al. [11]
reduced the dataset to 61 specific food categories instead
of 88). Either way, background information is critical be-
cause it provides food size information, and should not be
ignored.

The results show that we can get a 10% improvement in
accuracy, from the simple RGB histogram’s 71.2% accu-
racy on the 7 major food categories to the combination of
all methods, which gets 81.2%. It is reassuring that using
all the features together provides better accuracy than any
other combination of features, telling us that every feature
captures some information that another one doesn’t.

However, there is obviously a certain type of informa-
tion that these features are not able to catch. My hypothesis
is that this is because ingredients themselves can’t describe
an entire food item: if an object is all bread (as is often the
case with donuts, pastries, and bagels, which are roughly
the same size), then how do we tell them apart? While the
approach in this paper uses both shape and texture data, we
use texture to classify ingredients, and the shape between
the ingredients. Shape and texture are both very important
features to consider at the food-level instead of just the in-
gredient level, and I think that future research should ex-

plore those opportunities.

One failure of this approach is its inability to recognize
sandwiches. The entire point of the midpoint feature was
to capture structured foods like sandwiches, but this clas-
sifier frequently confuses sandwiches with pastries, donuts,
and bagels. Future works needs to find a better way to en-
code the characteristic structure of a sandwich, without los-
ing the ability to classify amorphous foods like salads that
this method has successfully done.

9. Conclusion and Future Work

Using histogram features to represent ingredient-level
spatial features provides better performance than other
baseline methods, and significantly better performance than
the simple bag of SIFT model, which loses lots of critical
information about food.

The main limitation of the approach presented in this
paper is that it assumes that the food is easily distinguish-
able from the background. Therefore, the problem of food
recognition still needs to be separately considered, and
should be approached in any future work.

Possibilities for future work include finding a better
ingredient-level feature to recognize sandwiches, labeling
more ground-truth ingredient data to improve the segmen-
tation performance of STF, and incorporating features that
consider image-level texture instead of only using texture to
classify ingredients.

In conclusion, this method gives a significant improve-



ment in classification accuracy over baseline methods, but
the pairwise features can take 1-2 minutes to compute on
a modern computer. If that time delay is acceptable, this
method would be easy to integrate into a mobile phone ap-
plication.
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